Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Pharm Biol ; 60(1): 509-524, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1713414

ABSTRACT

CONTEXT: Since the outbreak of SARS-CoV-2, researchers have been working on finding ways to prevent viral entry and pathogenesis. Drug development from naturally-sourced pharmacological constituents may be a fruitful approach to COVID-19 therapy. OBJECTIVE: Most of the published literature has focussed on medicinal plants, while less attention has been given to biodiverse sources such as animal, marine, and microbial products. This review focuses on highlighting natural products and their derivatives that have been evaluated for antiviral, anti-inflammatory, and immunomodulatory properties. METHODS: We searched electronic databases such as PubMed, Scopus, Science Direct and Springer Link to gather raw data from publications up to March 2021, using terms such as 'natural products', marine, micro-organism, and animal, COVID-19. We extracted a number of documented clinical trials of products that were tested in silico, in vitro, and in vivo which paid specific attention to chemical profiles and mechanisms of action. RESULTS: Various classes of flavonoids, 2 polyphenols, peptides and tannins were found, which exhibit inhibitory properties against viral and host proteins, including 3CLpro, PLpro, S, hACE2, and NF-κB, many of which are in different phases of clinical trials. DISCUSSION AND CONCLUSIONS: The synergistic effects of logical combinations with different mechanisms of action emphasizes their value in COVID19 management, such as iota carrageenan nasal spray, ermectin oral drops, omega-3 supplementation, and a quadruple treatment of zinc, quercetin, bromelain, and vitamin C. Though in vivo efficacy of these compounds has yet to be established, these bioproducts are potentially useful in counteracting the effects of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , COVID-19 Drug Treatment , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/isolation & purification , Biological Products/isolation & purification , COVID-19/virology , Drug Development/methods , Drug Synergism , Humans , Immunomodulating Agents/administration & dosage , Immunomodulating Agents/isolation & purification , Immunomodulating Agents/pharmacology
2.
Mucosal Immunol ; 15(2): 198-210, 2022 02.
Article in English | MEDLINE | ID: covidwho-1493071

ABSTRACT

As the COVID-19 pandemic is still ongoing, and considering the lack of efficacy of antiviral strategies to this date, and the reactive hyperinflammation leading to tissue lesions and pneumonia, effective treatments targeting the dysregulated immune response are more than ever required. Immunomodulatory and immunosuppressive drugs have been repurposed in severe COVID-19 with contrasting results. The heterogeneity in the timing of treatments administrations could be accountable for these discrepancies. Indeed, many studies included patients at different timepoints of infection, potentially hiding the beneficial effects of a time-adapted intervention. We aim to review the available data on the kinetics of the immune response in beta-coronaviruses infections, from animal models and longitudinal human studies, and propose a four-step model of severe COVID-19 timeline. Then, we discuss the results of the clinical trials of immune interventions with regards to the timing of administration, and finally suggest a time frame in order to delineate the best timepoint for each treatment.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/therapy , Immunomodulating Agents/administration & dosage , Immunosuppressive Agents/administration & dosage , Immunotherapy , SARS-CoV-2/drug effects , Animals , Antiviral Agents/adverse effects , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Drug Administration Schedule , Host-Pathogen Interactions , Humans , Immunomodulating Agents/adverse effects , Immunosuppressive Agents/adverse effects , Immunotherapy/adverse effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL